FYI: THESE IDENTITIES WILL BE PROVIDED ON THE GROUP QUIZ AND UNIT TEST:

sum and difference identities:	double-angle identities:	half angle identities:
$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$	$\sin 2\theta = 2\sin\theta\cos\theta$	$\sin\frac{x}{1-\cos x} = \pm \sqrt{\frac{1-\cos x}{1-\cos x}}$
$\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $or = 1 - 2\sin^2 \theta$ $or = 2\cos^2 \theta - 1$	$\cos \frac{x}{2} = \pm \sqrt{\frac{1+\cos x}{2}}$
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \cdot \tan y}$	$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$	$\tan\frac{x}{2} = \frac{1-\cos x}{\sin x} \text{ or } \frac{\sin x}{1+\cos x}$

USE THIS SHEET TO PRACTICE AND PREPARE! (no notes, no calculator) You will be expected to solve #1-13 on the group quiz and test. This information will then be used to answer additional questions about identities that include simplifying, factoring, solving for θ .

<u>#1-9:</u> Name the function that best completes each statement.

Quotient Identities:	Reciprocal identities:	
1 = $\frac{\cos\theta}{\sin\theta}$	3 = $\frac{1}{\tan \theta}$	$6.\underline{\qquad} = \frac{1}{\csc\theta}$
$2 = \frac{\sin\theta}{2}$	4 = $\frac{1}{\cos\theta}$	7 = $\frac{1}{\cot\theta}$
$\cos \theta$	$5.\underline{\qquad} = \frac{1}{\sin\theta}$	8 = $\frac{1}{\sec\theta}$

Pythagorean identity: **9.** _____ = 1

<u>#10-11</u>: Derive the other two Pythagorean identities using the main identity from #9.

Clearly show all steps (write #9 identity, divide all terms by $\sin \theta$ or $\cos \theta$, then simplify.) See notes on bright sheet.

11.

12. Label the coordinates of each highlighted terminal point.

13. Define each function in terms of x and y (based on the unit circle with r = 1.)

 $\sin \theta =$

 $\cos \theta =$

$$\tan \theta =$$

 $\csc \theta =$

 $\sec \theta =$

 $\cot \theta =$