FYI: THESE IDENTITIES WILL BE PROVIDED ON THE GROUP QUIZ AND UNIT TEST:
sum and difference identities:
$\sin (x \pm y)=\sin x \cdot \cos y \pm \cos x \cdot \sin y$
$\cos (x \pm y)=\cos x \cdot \cos y \mp \sin x \cdot \sin y$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \cdot \tan y}$

double-angle identities:	half angle identities:
$\sin 2 \theta=2 \sin \theta \cos \theta$	$\sin \frac{\boldsymbol{x}}{2}= \pm \sqrt{\frac{1-\cos \boldsymbol{x}}{2}}$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$	$\cos \frac{\boldsymbol{x}}{2}= \pm \sqrt{\frac{1+\cos \boldsymbol{x}}{2}}$
$\boldsymbol{o r}=1-2 \sin ^{2} \theta$	$\tan \frac{\boldsymbol{x}}{2}=\frac{1-\cos \boldsymbol{x}}{\sin \boldsymbol{x}}$ or $\frac{\sin \boldsymbol{x}}{1+\cos \boldsymbol{x}}$
$\tan 2 \theta=\underline{2 \cos 2-1}$	$\underline{2 \tan \theta}$

half angle identities:
$\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos \boldsymbol{x}}{2}}$
$\cos \frac{\boldsymbol{x}}{2}= \pm \sqrt{\frac{1+\cos \boldsymbol{x}}{2}}$
$\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}$ or $\frac{\sin x}{1+\cos x}$

USE THIS SHEET TO PRACTICE AND PREPARE! (no notes, no calculator)
You will be expected to solve \#1-13 on the group quiz and test. This information will then be used to answer additional questions about identities that include simplifying, factoring, solving for $\boldsymbol{\theta}$.
\#1-9: Name the function that best completes each statement.

Quotient Identities:

1. $-\left[=\frac{\cos \theta}{\sin \theta}\right.$
2. \qquad
Reciprocal identities:
3. $=\frac{1}{\tan \theta}$
4. $\quad=\frac{1}{\cos \theta}$
5. $\quad=\frac{1}{\sin \theta}$
6. $=\frac{1}{\csc \theta}$
7. $=\frac{1}{\cot \theta}$
8. $=\frac{1}{\sec \theta}$

Pythagorean identity:
9. \qquad $+$ \qquad $=1$
\#10-11: Derive the other two Pythagorean identities using the main identity from \#9.
Clearly show all steps (write \#9 identity, divide all terms by $\sin \theta$ or $\cos \theta$, then simplify.) See notes on bright sheet.
10. \square
12. Label the coordinates of each highlighted terminal point.

